Vesna Županović

$\varepsilon\text{-neighborhoods}$ of orbits of dynamical system

University of Zagreb, Croatia Faculty of Electrical Engineering and Computing

Centre for Nonlinear Dynamics, Zagreb

East Alpine Meeting on Differential Equations and Dynamical Systems Zagreb, December 8, 2017

Content

- D Centre for Nonlinear Dynamics
- 2 Poincaré and Dulac maps
- 3 Epsilon-neighborhood and box dimension
 - 4 Motivation for studying bifurcations from fractal analysis
- 5 Analytic Poincaré map-Hopf bifurcation
- Non-analytic Poincaré map
 - Connection between multiplicity and length of ε -neighborhood
 - Application and generalization

(4回) イヨト イヨト

Research groups in Centre for Nonlinear Dynamics

- Low Dimensional Dynamics (Štimac, Anušić with Henk Bruin and Michal Misiurewicz)
- Fractal Zeta Functions (Žubrinić, Radunović with Michel Lapidus)
- Bifurcation Theory (Žubrinić, Županović, Resman, Horvat Dmitrović, Vlah with Pavao Mardešić)
- Nonuniform Hyperbolicity (Dragičević with Luis Barreira and Claudia Valls)
- Extended Dynamical Systems (Slijepčević, Rabar, Ninčević with Thierry Gallay)

イロト イヨト イヨト イヨト 二日

Bifurcation Theory, Fractal Zeta Functions

Bifurcation Theory

Mardešić

Resman

Fractal Zeta Functions

Žubrinić

Horvat

Vlah

Vesna Županović

ε-neighborhoods of orbits of dynamical syster

イロト イポト イヨト イヨト

Centre for Nonlinear Dynamics Poincaré and Dulac maps Epsilon-neighborhood and box dimension Motivation for studying bifur

Limit cycle

Figure: Limit cycle and Poincaré map

- *Limit cycles*, orbits which are isolated closed curves.
- Number of limit cycles \iff number of fixed points of the first return *Poincaré map* near singular point, limit cycle or polycycle.
- The first return near saddle polycycle of planar analytic vector is called *Dulac map*.

▲□ ▶ ▲ □ ▶ ▲ □

Why the Dulac maps and Poincaré maps are interesting in dynamics?

 \rightarrow 16th Hilbert (open) problem: number of closed periodic orbits born in bifurcations of a polynomial system?

 \rightarrow number of closed periodic orbits is detected as **fixed points of the first return map** $s \rightarrow P(s)$

 \rightarrow saddle polycycles - non-analytic Poincaré maps

Analytic and non-analytic Poincaré maps

- Poincaré map near weak focus is analytic (also near focus with no characteristic direction)
- Poincaré map near limit cycle is analytic
- Poincaré map (Dulac) near saddle polycycles is non-analytic
- Poincaré map near focus (general case) is non-analytic

Dulac maps

- The Dulac maps
- 1. germs f of $C^{\infty}(0, d)$ diffeomorphisms
- 2. with *power-log* asymptotic expansions¹ \hat{f} :

$$f \sim \widehat{f}, x \to 0$$
, with $\widehat{f}(x) = \sum_{i=1}^{\infty} x^{\alpha_i} P_i(-\log x)$,

 P_i polynomials, $0 < \alpha_1 < \alpha_2 < \ldots \rightarrow +\infty$, finitely generated.

¹
$$\forall n \in \mathbb{N}, \quad \left| f - \sum_{i=1}^{n} a_i x^{\alpha_i} P_i(-\log x) \right| = O(x^{\alpha_n}), \ x \to 0.$$

イロト イヨト イヨト イヨト 二日

Dulac maps of hyperbolic polycycle

- the Dulac map of a monodromic saddle polycycle of planar analytic vector field
- a hyperbolic polycycle with k saddles of hyperbolicity ratios $r_1, \ldots, r_k > 0$:

 $s^{lpha}(-\log s)^m$, $m \in \mathbb{N}$, lpha finitely generated by r_1, \ldots, r_k

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Centre for Nonlinear Dynamics Poincaré and Dulac maps Epsilon-neighborhood and box dimension Motivation for studying bifur

Definition of box dimension

 ε -neighborhood of a bounded set $A \subset \mathbb{R}^n$

$$A_{\varepsilon} = \{y \in \mathbb{R}^n : d(y, A) < \varepsilon\}.$$

$$d = \dim_B A = n - \lim_{\varepsilon \to 0} \frac{\log |A_{\varepsilon}|}{\log \varepsilon}$$

which means that

$$|A_{\varepsilon}| \simeq \varepsilon^{n-d}$$

i.e. there exist positive constants C_1 , C_2

$$C_1 \varepsilon^{n-d} \leq |A_{\varepsilon}| \leq C_2 \varepsilon^{n-d}$$

for small ε .

Vesna Županović

Examples appearing as orbits of dynamical systems

Chirp $f(x) = x^{\alpha} \sin x^{-\beta} d = \dim_{B} \Gamma = 2 - \frac{1+\alpha}{1+\beta}, \ 0 < \alpha < \beta \leq 1$ Spiral $r = \varphi^{-\alpha} d = \dim_B \Gamma = \frac{2}{1+\alpha}, \ 0 < \alpha \leq 1$

 $\dim_B \Gamma = \frac{4}{3}, \alpha = 0.5$

Sequence

 $S \dots \left(\frac{1}{n^{\alpha}}\right) d = \dim_B S = \frac{1}{1+\alpha}, \alpha > 0$

・ロト ・回ト ・ヨト ・ヨト - ヨ

Why box dimension of smooth curves?

"A straight line is the total negation of the plane whereas a curved line is potentially the plane in that it contains the essence of the plane within itself." Wassily Kandinsky: Point, Line and Plane, (1926)

Wassily Kandinsky (Moscou 1866- Neuilly-sur-Seine 1944)

Motivation

- A natural idea is that "density" of orbit is related to quantity and quality of objects which could be produced by perturbation of the system.
- We are interested in connection between the change of box dimension and bifurcation of dynamical system.
- We are interested in connection between the value of box dimension of an orbit and multiplicity of the system near fixed point or periodic orbit.
- In general- we are interested in reading properties of dynamical system form epsilon-neighborhood of orbit

イロト イポト イヨト イヨト

Which objects we study?

- Discrete systems by ε-neighborhood of an orbit near fixed point

 normal forms of some classes of discrete systems could be read
 from ε-neighborhood (parabolic diffeos, Resman DCDS, 2013.)
 ediscrete system could be embedded in a continuous system (class of
 1-dim systems, Mardešić, Resman, Rolin, Ž., Advances in Math.
 2016.) -instead of ε-neighborhood of discrete system we can study
 an ε-neighborhood of the continuous system
- Continuous systems by

-spiral trajectories near focus, limit cycle and a polycycle -discrete system generated by Poincaré, Dulac map and unit-time map -embeddings of Poincaré, Dulac map and unit-time map

Methods

- We combine standard methods appearing in dynamical systems with $\varepsilon-{\rm neighborhood}$ approach
- Box dimension from leading term, and other exponents and coefficients show important properties of the system
- Standard methods: normal forms of discrete and continuous systems, formal and analytic classification by normal forms
- Asymptotic expansion of Poincaré map, Dulac maps, time one map
- Embeddings of discrete systems to continuous systems
- Complexification
- Oscillatory integrals, Abelian integrals,...
- Newton diagrams, blow-up, blow-up in a family of systems.....
- Numerical methods
- Slow-fast dynamics

물 🖌 🖉 🖻 👘 🗄 물

Fractal dimensions in dynamics-standard approach

- Other fractal dimensions important for dynamics: Hausdorff dimension, Lyapunov dimension, Rényi spectrum for dimensions, correlation dimension, information dimension, Hentschel-Procaccia spectrum for dimensions, packing dimension, and effective fractal dimension.
- Since 1970 thermodynamics formalism, developed by Sinai, Ruelle, and Bowen, resulted in Hausdorff dimension of the Smale horseshoe and a results about Hausdorff dimension of Julia and Mandelbrot sets.
- Since 1980 physicists started to estimate and compute fractal dimensions of strange attractors (Lorenz, Henon,...). Fractal dimensions are estimated also for attractors of infinite-dimensional dynamical systems.

イロン イボン イモン イモン 三日

Theorem Poincaré map [Žubrinić, Ž, 2008]

Theorem

Assume: Γ a spiral trajectory of a system of class C^1 ; $P_{\sigma}(s)$ is the Poincaré map with respect to an axis σ , $P_{\sigma}(s) = s + d_{\sigma}(s)$ for each σ ; the displacement function $d_{\sigma}(\cdot) : (0, r_{\sigma}) \to (-\infty, 0)$ monotonically nonincreasing; $-d_{\sigma}(s) \simeq s^{\alpha}$ as $s \to 0$, for $\alpha > 1$. (a) If Γ is a limit cycle spiral, then

$$\dim_B \Gamma = 2 - \frac{1}{\alpha}.$$

(b) If Γ is a focus spiral of (1), then

$$\dim_{B} \Gamma = \begin{cases} 2 - \frac{2}{\alpha} & \text{for } \alpha > 2, \\ 1 & \text{for } 1 < \alpha \leq 2. \end{cases}$$

イロト イヨト イヨト イヨト 二日

Weak focus

Weak focus is included in the previous theorem, since the Poincaré map is analytic

$$\dot{x} = -y + p(x, y)$$

 $\dot{y} = x + q(x, y),$
(1)

p(x, y) and q(x, y) are analytic functions and $|p(x, y)| \le C(x^2 + y^2)$, $|q(x, y)| \le C(x^2 + y^2)$ for some C > 0 and (x, y) near the origin.

Weak focus in the normal form and Hopf bifurcation [Žubrinić, Ž, 2005]

$$\begin{cases} \dot{r} = r(r^{2l} + \sum_{i=0}^{l-1} a_i r^{2i}), \\ \dot{\varphi} = 1. \end{cases}$$
(2)

Hopf bifurcation occurs for l = 1 if $a_0 = 0$. Hopf-Takens bifurcation occurs for l > 1, producing l limit cycles in the system

December 7, 2017

Theorem

 Γ a part of a trajectory of (2) near the origin. (a) $a_0 \neq 0$, then the spiral Γ is of exponential type, that is, comparable with $r = e^{a_0\varphi}$, and hence dim_B $\Gamma = 1$. (b) k is fixed, $1 \le k \le l$, $a_l = 1$ and $a_0 = \cdots = a_{k-1} = 0$, $a_k \ne 0$. Then Γ is comparable with the spiral $r = \varphi^{-1/2k}$, and

$$d:=\dim_B \Gamma=\frac{4k}{2k+1}.$$

Centre for Nonlinear Dynamics Poincaré and Dulac maps Epsilon-neighborhood and box dimension Motivation for studying bifur

Discrete orbit

generator q multiplicity of \leftrightarrow rate of growth of fixed point 0

orbit $S^g(x_0)$

 ε -neighbourhood

 \leftrightarrow *box dimension (q diff. at 0)*critical Minkowski order (g not diff. at 0)

 $q = \mathrm{id} - f$

December 7, 2017

Box dimension and Minkowski content of 1-dimensional set

- s-dimensional Minkowski content of the orbit $S^{g}(x_{0}), 0 \leq s \leq 1$: $\mathcal{M}^{s}(S^{g}(x_{0})) = \lim_{\epsilon \to 0} \frac{|A_{\epsilon}(S^{g}(x_{0}))|}{c^{1-s}}$
- box dimension $s = \dim_B S^g(x_0)$
- $\mathcal{M}^{s} \neq 0, \infty \Rightarrow |A_{\varepsilon}(S^{g}(x_{0}))| \simeq \varepsilon^{1-s}$, otherwise not comparable to any power of ε

Figure: Minkowski content \mathcal{M}^s as function of $s \in [0, 1]$

22 / 43

A motivating example

EXAMPLE 1.

- $g_1(x) = x x^2$, (diff. generators)
- $g_2(x) = x x^2(-\log x)$, $g_3(x) = x x^2 \log(-\log x)$ (nondiff. generators)
- $|A_{\varepsilon}(S^{g_1}(x_0))| \simeq \varepsilon^{1/2}$ power-type behaviour!
- $\lim_{\varepsilon \to 0} \frac{|A_{\varepsilon}(S^{g_{2,3}})|}{\varepsilon^{1/2}} = +\infty$, $\lim_{\varepsilon \to 0} \frac{|A_{\varepsilon}(S^{g_{2,3}})|}{\varepsilon^{1/(2+\delta)}} = 0$, $\forall \delta > 0$ - noncomparable to any power!
- dim_B $S^{g_1}(x_0) = \frac{1}{2}$, but also dim_B $S^{g_{2,3}}(x_0) = \frac{1}{2}$
- Minkowski content

$$\mathcal{M}^{1/2}(S^{g_1}(x_0)) > 0$$
, but both $\mathcal{M}^{1/2}(S^{g_{2,3}}(x_0)) = 0$

 In nondiff. case find appropriate gauge functions (instead of powers) to compare |A_ε| with → generalized Minkowski content (Lapidus)

The behaviour of the ε -neighbourhood of the orbit with respect to nondifferentiable generator

Theorem (Mardešić, Resman, Županović, 2012)

• $f \in C^{r}(0, d)$, continuous on [0, d), positive on (0, d), f(0) = f'(0) = 0,

• f sublinear:

$$m \le x \cdot (\log f)'(x), x \in (0, d), m > 1.$$

Then

$$|A_{\varepsilon}(S^g(x_0))| \simeq f^{-1}(\varepsilon) \text{ as } \varepsilon \to 0.$$

* e.g. $f(x) = \frac{x}{-\log x}$ not sublinear, $\frac{|A_{\varepsilon}(S^g(x_0))|}{f^{-1}(\varepsilon)} \to \infty$ as $\varepsilon \to 0$.

Special case-differentiable generator

Corollary

f enough differentiable on [0, d), positive, strictly increasing on (0, d), $f(x) \simeq x^k$, g = id - f then $|A_{\varepsilon}(S^g(x_0))| \simeq \varepsilon^{1/k}$ and $\dim_B(S^g(x_0)) = 1 - \frac{1}{k}$

Our admissible class of generating functions

- f with asymptotic development in Chebyshev scale at x = 0,

Definition (CHEBYSHEV SCALE;

Mardešić: Chebyshev systems and the versal unfolding of the cusp of order n)

 $\mathcal{I} = \{u_0, u_1, u_2, \ldots\}, u_i \in C[0, d) \cap C^r(0, d), r \in \mathbb{N} \cup \{\infty\}$ such that

i) Division/differentiation algorithm can be performed r times except possibly at x = 0 (\Rightarrow extension by continuity to 0):

$$\mathcal{I} = \{u_0, u_1, u_2, \ldots\} /: u_0 \Rightarrow D_0(\mathcal{I}) = \{\underbrace{1, \underbrace{u_1}_{D_0(u_0)}, \underbrace{u_2}_{U_0}, \ldots\} /(i') \\ \{D_0(u_1))', D_0(u_2)', \ldots\} /: D_0(u_1)' \Rightarrow D_1(\mathcal{I}) = \{\underbrace{1, \underbrace{(D_0(u_2))'}_{D_1(u_1)}, \underbrace{(D_0(u_3))'}_{D_1(u_2)}, \underbrace{(D_0(u_3))'}_{D_1(u_3)}, \ldots\} /(i') \\ \{D_1(u_2))', D_1(u_3)', \ldots\} /: D_1(u_2)' \Rightarrow D_2(\mathcal{I}) = \{\underbrace{1, \underbrace{(D_1(u_3))'}_{D_2(u_2)}, \underbrace{(D_1(u_3))'}_{D_1(u_3)}, \underbrace{(D_1(u_4))'}_{D_2(u_4)}, \ldots\} /(i') \\ ii) \quad D_i(u_{i+1}) \text{ strictly increasing} \\ iii) \quad D_ju_i(0) = 0, \ j < i \text{ in the sense of limit} \end{cases}$$

 $D_i(f) \dots i - th$ generalized derivative of f in the scale \mathcal{I}

Vesna Županović

arepsilon-neighborhoods of orbits of dynamical system

December 7, 2017

★ 글 ▶ - 글

26 / 43

Examples of Chebyshev scales

- $\mathcal{I} = \{1, x, x^2, x^3, x^4, ...\}$ -diff. case,
- $\mathcal{I} = \{x^{\alpha_0}, x^{\alpha_1}, x^{\alpha_2}, ...\}, \alpha_i \in \mathbb{R}, 0 < \alpha_0 < \alpha_1 < \alpha_2 < ...$
- $\mathcal{I} = \{1, x(-\log x), x, x^2(-\log x), x^2, x^3(-\log x), x^3, \ldots\}$
- any set of monomials of the type $x^k(-\log x)^l$, ordered by increasing flatness:
- $x^i (-\log x)^j < x^k (-\log x)^l$ if and only if (i < k) or (i = j and j > l).

Generalized Minkowski content, critical Minkowski order (generalization of box dimension)

- \$\mathcal{I} = {u_0, u_1, ...}\$ Chebyshev, \$u_{i, i>0}\$ positive, strictly increasing on (0, d), \$f\$ has development in \$\mathcal{I}\$
- assumptions from Theorem 1 on f, and the upper power condition

Definition (generalized Minkowski content)

* Upper generalized Minkowski content of $S^{g}(x_{0})$ with respect to a Chebyshev scale $\{u_{i}, i = 1, 2, ...\}$

$$\mathcal{M}^*(S^g(x_0), u_i) = \limsup_{\varepsilon \to 0} \frac{|A_{\varepsilon}(S^g(x_0))|}{u_i^{-1}(\varepsilon)}$$

• $|A_{\varepsilon}(S^{g}(x_{0}))|$ compared to inverted T-scale, not to powers of ε

٥

December 7, 2017 28 / 43

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Figure: upper generalized Minkowski content as function of *i*.

Vesna Županović

ε-neighborhoods of orbits of dynamical system

크 December 7, 2017 29 / 43

> < 물 > < 물 >

Definition (critical Minkowski order)

 \ast Upper critical order of g with respect to the scale \mathcal{I} :

 $\overline{m}(g,\mathcal{I}) = \max\{i \geq 1 \mid \mathcal{M}^*(S^g(x_0), u_i) > 0\},\$

* (lower) critical order $\underline{m}(g, \mathcal{I})$, $m(g, \mathcal{I})$

 $* m(g, \mathcal{I}) = i_0 \text{ iff } |A_{\varepsilon}(S^g(x_0))| \simeq u_{i_0}^{-1}$

-g differentiable at zero: development in $\mathcal{I} = \{1, x, x^2, ...\} \Rightarrow \dim_B(g) = 1 - \frac{1}{m(g,\mathcal{I})}.$

December 7, 2017

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

Multiplicity of fixed point zero of *q*-differentiable case and in a family

- $g \in C^r[0, d)$, 0 fixed point; $f = \operatorname{id} q$
 - $\mu_0(f) = k$, if $f(0) = f'(0) = \ldots = f^{(k-1)}(0) = 0$, $f^{(k)}(0) \neq 0$
 - $\mu_0^{fix}(q) := \mu_0(f) = k$
 - $q_{\lambda}(q_{\lambda})$ family
 - $\mu_0(q, (q_\lambda)) \ge m$ if for any neighbourhood of x = 0 there exists some function in (g_{λ}) , arbitrarly close to g, with at least m fixed points in the given neighbourhood (different from 0)
 - standard multiplicity in diff. case = multiplicity of f in a family of all diff. functions
 - (Mardešić: Chebyshev systems and the versal unfolding of the cusp of order n)

Vesna Županović

ε-neighborhoods of orbits of dynamical system

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○ December 7, 2017

31 / 43

Connection multiplicity - critical Minkowski order

• (f_{λ}), asymptotic development in a family of T-scales \mathcal{I}_{λ}

Theorem (MRŽ, 2012)

 $f = f_{\lambda_0}$ satisfies all assumptions of Theorem 2 and the upper power condition:

 $x \cdot (\log f(x))' \le M$, $x \in (0, d)$, for some constant M > 0.

Then the following is equivalent:

- $D_i(f)(0) = 0$ for i = 0, ..., k 1 and $D_k(f)(0) > 0$, $k \ge 1$, ($f \simeq u_k, k \ge 1$),
- $|A_{\varepsilon}(S^{g}(x_{0})| \simeq u_{k}^{-1}(\varepsilon),$
- $m(g, \mathcal{I}) = k$.

(日) (四) (E) (E) (E)

Deficiency of box dimension, nondifferentiable generators

EXAMPLE 1 REVISITED

- f_2 , f_3 not differentiable at x = 0 (not of power-type behaviour as $x \rightarrow 0$)
- standard box dimension/Minkowski contents compare $|A_{\varepsilon}(S^{g_{2,3}}(x_1))|$ to power functions; $|A_{\varepsilon}(S^{g_{2,3}}(x_1))| \simeq f_{2,3}^{-1}(\varepsilon)$ not of power type \Rightarrow no precise information on behaviour of ε -neighbourhood
- critical Minkowski order with respect to the scale

$$\mathcal{I} = \{1, x^2 \log(-\log x), x^2(-\log x), x^2, \ldots\}:$$

• $m(q_1, \mathcal{I}) = 3 > m(q_2, \mathcal{I}) = 2 > m(q_3, \mathcal{I}) = 1.$

33 / 43

Applications of results

• To find multiplicity of differentiable and nondifferentiable Poincaré maps around different limit periodic sets weak/strong focus, limit cycle, saddle loop, 2 saddle loop, also to obtain multiplicity of the Abelian integrals

Roussarie's expansion of Poincaré map around saddle loop: logarithmic terms $x^k(-\log x) \rightarrow \text{nondiff.}$ at x = 0.

Nucleus and tail

(C. Tricot)

An improvement of the definition of the length of the ε -neighborhood, [MRRZ2] Mardešić, Resman, Rolin, V. Ž., Length of ε -neighborhoods of orbits of Dulac maps, preprint

Suppose $g \in C^{\infty}(0, d)$ embeddable into a $(C^1 \text{ in } t)$ flow¹, $g \hookrightarrow \{g^t\}_{t \in \mathbb{R}}, g^t \in C^{\infty}(0, d)$, as the time-one map $(q = q^1)$.

• the continuous critical time τ_{ε} : $g^{\tau_{\varepsilon}}(x_0) - g^{\tau_{\varepsilon}+1}(x_0) = 2\varepsilon$

 $\Rightarrow n_{\varepsilon} = \lceil \tau_{\varepsilon} \rceil \bullet$ The continuous-time length of ε -neighborhood of orbit:

 $\mathsf{A}_{\varepsilon}^{c}(S^{g}(x_{0})) = g^{\tau_{\varepsilon}}(x_{0}) + 2\varepsilon + \tau_{\varepsilon} \cdot 2\varepsilon \quad \big(\text{ the given flow } \{g_{t}\}_{t} \big)$

- We show that $\varepsilon \in (0, d) \varepsilon \mapsto A^c_{\varepsilon}(S^g(x_0))$ in ε has a full asymptotic expansion in the power, iterated logarithm scale
- The asymptotic expansion extends the initial part of the asymptotic expansion of the classical $A_{\varepsilon}(S^{g}(x_{0}))$ ${}^{1}g^{0} = \operatorname{id}, g^{t+s} = g^{t} \circ g^{s}; t, s \in \mathbb{R}.$

December 7, 2017

36 / 43

An example from [MRRZ2]

•
$$g(x) = x + x^2 \log x + \dots$$
 Dulac.

$$|A^c_{\varepsilon}(S^g(x_0))| = \sqrt{2}\varepsilon^{1/2}\boldsymbol{\ell}^{1/2} + \dots$$

has asymptotic expansion in \mathcal{L}_2 , $\varepsilon \to 0$ $\boldsymbol{\ell} := \boldsymbol{\ell}_1 := \frac{1}{-\log x}$, \mathcal{L}_2 algebra with $\boldsymbol{\ell}_1$ and $\boldsymbol{\ell}_2 = \boldsymbol{\ell} \circ \boldsymbol{\ell}$

... a refinement of a previous result [MRZ, 2012]:

$$|A_{\varepsilon}(S^g(x_0)| \simeq f^{-1}(\varepsilon), \ f = \mathrm{id} - g$$

Here, $f(x) = id - g = x^2(-\log x) + ...$

$$\Rightarrow f^{-1}(y) \sim \frac{\sqrt{2}y^{1/2}}{(-\log y)^{1/2}}.$$

Vesna Županović

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Centre for Nonlinear Dynamics Poincaré and Dulac maps Epsilon-neighborhood and box dimension Motivation for studying bifur

Thank you!

 ε -neighborhoods of orbits of dynamical system

 < □ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < Ξ > Ξ

 stei
 December 7, 2017

Asymptotic development of displacement functions

 (X_{λ}) analytic unfolding of (X_{λ_0}) (monodromic LPS), (f_{λ})

stable strong/weak focus singular point

 $f_{\lambda}(x) = \beta_1(\lambda)(x+g_1(\lambda,x)) + \beta_3(\lambda)(x^3+g_3(\lambda,x)) + \beta_5(\lambda)(x^5+g_5(\lambda,x)) + \dots, x \in [0, d),$

 $g_i(\lambda, x)$ linear combination of power-type monomials of order strictly greater than x^i , coefficients depending on λ .

- * strong focus: $\beta_1(\lambda_0) \neq 0$, weak focus: $\beta_1(\lambda_0) = 0$.
- stable limit cycle

$$f_{\lambda}(x) = \alpha_0(\lambda) + \alpha_1(\lambda)x + \alpha_2(\lambda)x^2 + \alpha_3(\lambda)x^3 + \dots, \ x \in [0, d).$$

stable homoclinic loop

$$\begin{split} f_{\lambda}(x) &= \beta_{0}(\lambda) + \alpha_{1}(\lambda)[x\omega(x,\alpha_{1}(\lambda)) + g_{1}(x,\lambda)] + \\ &+ \beta_{1}(\lambda)x + \alpha_{2}(\lambda)[x^{2}\omega(x,\alpha_{1}(\lambda)) + g_{2}(x,\lambda)] + \beta_{2}(\lambda)x^{2} + \ldots + \\ &+ \beta_{n}(\lambda)x + \alpha_{n}(\lambda)[x^{n}\omega(x,\alpha_{1}(\lambda)) + g_{n}(x,\lambda)] + \beta_{n}(\lambda)x^{n} + o(x^{n}), \\ &\omega(x,\alpha) = \begin{cases} \frac{x^{-\alpha} - 1}{\alpha} & \text{if } \alpha \neq 0, \\ -\log x & \text{if } \alpha = 0, \end{cases} \quad x \in (0,d), \end{split}$$

 $g_i(x, \lambda)$ linear combination of monomials of the type $x^k \omega^l$ of strictly greater order than $x^i \omega$: $x^i \omega^j < x^k \omega^l$ if (i < k) or (i = k and j > l). * $\alpha_1(\lambda_0) = 0$, $\beta_0(\lambda_0) = 0$.

Vesna Županović

ε-neighborhoods of orbits of dynamical system

December 7, 2017

The example: cyclicity of the stable homoclinic loop via the critical order

The corresponding family of Chebyshev scales:

$$\mathcal{I}_{\lambda} = \{1, x\omega(x, \alpha_1(\lambda)) + g_1(x, \lambda), x, x^2\omega(x, \alpha_1(\lambda)) + g_2(x, \lambda), x^2, \ldots\}.$$

The development of f_{λ_0} around stable loop:

$$f_{\lambda_0}(x) = \beta_1(\lambda_0)x + \alpha_2(\lambda_0)x^2\omega(x,0) + \alpha_3(\lambda_0)x^3\omega(x,0) + \dots = \\ = \beta_1(\lambda_0)x + \alpha_2(\lambda_0)x^2(-\log x) + \alpha_3(\lambda_0)x^3(-\log x) + \dots (3)$$

• If
$$f_{\lambda_0}(x) \simeq x^k$$
 as $x \to 0$, $k \ge 2$, then $m(g_{\lambda_0}, \mathcal{I}_{\lambda_0}) = 2k$.

• If
$$f_{\lambda_0} \simeq x^k (-\log x)$$
, $k \ge 2$, then $m(g_{\lambda_0}, \mathcal{I}_{\lambda_0}) = 2k - 1$.

- The cyclicity of the loop less than or equal to 2k, 2k − 1; critical order recognizes cyclicity!
- dim_B(S^{g_{λ0}}(x₀)) in both cases 1 − 1/k; box dimension does not recognize cyclicity!

Vesna Županović

December 7, 2017

40 / 43

Multiplicity of a function in a family

Definition

- Λ a topological space, $\{f_{\lambda} | \ \lambda \in \Lambda\}$, $f_{\lambda} : [0, d) \to \mathbb{R}$
 - x = 0 is a zero of multiplicity greater than or equal to m of the function f_{λ₀} in the family of functions (f_λ) if there exists a sequence of parameters λ_n → λ₀ as n → ∞ such that for every n ∈ N, f_{λn} has m distinct zeros yⁿ₁,..., yⁿ_m ∈ [0, d) different from x = 0 and yⁿ_j → 0, as n → ∞, j = 1,..., m.
 - If *m* is the biggest possible such, x = 0 is a zero of of multiplicity *m* of the function f_{λ_0} in the family (f_{λ}) , $\mu_0(f_{\lambda_0}, (f_{\lambda})) = m$.
 - g_λ = id − f_λ, the multiplicity of 0 as a fixed point of g_{λ0} with respect to the family (g_λ) is μ^{fix}₀(g_{λ0}, (g_λ)) := μ₀(f_{λ0}, (f_λ)).

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Admissible class, asymptotic development in a family of Chebyshev scales

Admissible class of generators

• $f = f_{\lambda_0}$ belongs to the family (f_{λ}) of functions on [0, d) with asymptotic development in a Chebishev family $\mathcal{I}_{\lambda} = \{ u_0(x, \lambda), u_1(x, \lambda), \dots, u_k(x, \lambda) \}:$

$$f_{\lambda}(x) = \sum_{i=0}^{k} lpha_i(\lambda) u_i(x, \lambda) + \psi_k(x, \lambda), \quad \lambda \in \mathbf{P},$$

 $\psi_k(x,\lambda)$ such that all generalized derivatives up to the order k vanish in x = 0.

•
$$g_{\lambda} = id - f_{\lambda}$$
, $\lambda \in \mathbf{P}$; $g = g_{\lambda_0}$.

Vesna Županović

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○ December 7, 2017

\star the upper power condition:

$$\mathcal{I} = \{e^{-1/x}, e^{-1/2x}, e^{-1/3x}, \ldots\},$$

then
$$u_1^{-1}(\varepsilon) \simeq u_2^{-1}(\varepsilon) \simeq u_3^{-1}(\varepsilon) \simeq \dots$$

The multiplicity cannot be uniquely determined from the behaviour of ε -neighbourhood!

* e.g. $f(x) = \frac{x}{-\log x}$ not sublinear, $\frac{|A_{\varepsilon}(S^{g}(x_{0}))|}{f^{-1}(\varepsilon)} \to \infty$ as $\varepsilon \to 0$. non-Chebyshev: $\mathcal{I} = \{1, x^2, x^2/2, x^2/3, \ldots\}$ (!(ii),(iii)!) non-Chebyshev: $\mathcal{I} = \{1, x \sin \frac{1}{x}, x^2 \sin \frac{1}{x}, \ldots\}$ (!(i)!)